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Less trivial example

A 3-coloring of a random graph with c=4.36

Text

The “           ” problemq log q

Impossible-to-solve problems
Some optimization problems such as COL and SAT are almost impossible to solve!

ex: Hard Instances of random graph coloring

• Consider q color (with q large enough) and a large 
random graph of average degree c
• W.h.p this graph is colorable if c<2q log q
• However, no algorithm is able to do so efficiently 
(polynomial) for c> q log q !

No one has ever seen the solution of, 
say 5-coloring, for large enough c and N=106

 Average
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D. Achlioptas et al. Nature 2005
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Consider the fo"owing “coloring”
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Hamiltonian

H =
∑

<ij>

δ(si, sj)

si = 1, 2, . . . , q
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Frustrating Intractable 
Problems

We know that some random problems DO have solutions, 
but we cannot find them!

Sampling and performing Monte-Carlo is even Harder!

Many predictions from statistical physics in random 
problems.... but impossible to test most of them !
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A Different “Reverse” strategy

Problem Solution 

Solution Problem 

Instead of  choosing a problem, and looking for a solution....

We choose a configuration/assignment and
 and look for a problem for which this is a solution !
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The Planted Ensemble
in the coloring problem

Consider the 3-coloring problem with N nodes and M links.

1) Color randomly 
the N nodes

11) Put the M links randomly such 
that the planted  configuration is a 

proper coloring

111) Now, we have created a problem 
for which we know the solution

IV) We could also have prepared a configuration with a known cost/energy
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The surprising answer is: in some cases YES !

Random ensemble Planted ensemble
Choose a random graph

 with N nodes and M links
Choose a random coloring of N 

nodes

Choose a random graph such 
that this is a correct coloring... 

Montanari and Semerjian, Jstat. ‘06 & Achlioptas and Coja-Oghlan, arXiv:0803.2122:

The two ensembles are asymptotically (N➔∞) equivalent for low enough degree c !



The Random ensemble versus 
the Planted ensemble

Random ensemble Planted ensemble
Choose a random graph

 with N nodes and M links
Choose a random coloring of N 

nodes

Choose a random graph such 
that this is a correct coloring... 

Definition : Two ensembles of random graphs are asymptotically equivalent if and only if 
in the thermodynamic limit every property which is almost surely true on a graph from one 
ensemble is also almost surely true on a graph from the other ensemble.



Some open questions:

Until which connectivity/degree c the planted and random 
ensembles are equivalent ?

Is the planted ensemble interesting beyond this 
connectivity ? 

Can we generalize this approach to finite energy (coloring 
with a finite fraction of mistakes ?)

How can we use a planted configuration ?

What are the models where a “quiet” planting is possible ?



In this talk:

1) A (brief) summary of a theory of 
“quiet” planting in random models

2) Using planted configurations 
for fast simulations.



The Planted Ensemble



The Planted Ensemble

* We use the formalism described in Zdeborová’s talk
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Consider a model where a factorized (i.e. identical for all nodes) 
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 (high temperature or low degree)

=



A list of  models
with “Quiet” planting !

• Random q-coloring problem
• Random XOR-SAT
• Mean field spin glasses (e.g. Vianna-Bray, Sherrington-Kirkpatrick)
• Random 2-in-4 Sat
• Random Vertex-Cover (independent set)
• Any non disordered model on a random regular graphs
•....

This condition is fulfi"ed (at least in some region) for many models: 



A list of  models
with “Quiet” planting !

• Random q-coloring problem
• Random XOR-SAT
• Mean field spin glasses (e.g. Vianna-Bray, Sherrington-Kirkpatrick)
• Random 2-in-4 Sat
• Random Vertex-Cover (independent set)
• Any non disordered model on a random regular graphs
•....

This condition is fulfi"ed (at least in some region) for many models: 

This condition is not fulfi"ed for :    
•Random K-SAT 
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Main result
Consider a model where the annealed computation is

correct in some region  (high temperature or low degree)

In the region where the
 two free energies are equal,

the two ensembles are equivalent

In the region where the
 two free energies are different,

the planted configuration induces an 
additional “Gibbs” state 
(or BP fixed point)

Consider a model where a factorized (i.e. identical for all nodes) 
Belief Propagation solution is correct in some region 

 (high temperature or low degree)

=
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A list of  models
with “Quiet” planting !

• Random q-coloring problem
• Random XOR-SAT
• Mean field spin glasses (e.g. Vianna-Bray, Sherrington-Kirkpatrick)
• Random 2-in-4 Sat
• Random Vertex-Cover (independent set)
• Any non disordered model on a random regular graphs
•....

This condition is fulfi"ed (at least in some region) for many models: 

For all these models, the cavity method allows to compute 
the value of the threshold beyond which f ≠ fannealed

➩“Phase transition”

In some models, the 
equivalence can be proven



Take-home message:

Conjecture 1: the planted model is equivalent to the 
original one up to the point where the annealed 
solution is correct                                                             
(for physicists: up to the static spin glass transition...)          
and the planted configuration is a “typical” one.



A Solution To an Impossible-To-Solve Problem
ex: 5-coloring of  Erdös-Renyi random graphs 
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ex: q-coloring of  Erdös-Renyi random graphs for large q 
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Take-home message:
Conjecture 1: the planted model is equivalent to the 
original one up to the point where the annealed 
solution is correct                                                             
(for physicists: up to the spin glass transition...)          
and the planted configuration is a “typical” one

U. Feige, E. Mossel and D. Vilenchik.
Proceedings of Random'06, LNCS  4410,

Planted configuration easy 
to find for large enough c

http://www.wisdom.weizmann.ac.il/%7Efeige
http://www.wisdom.weizmann.ac.il/%7Efeige
http://www.stat.berkeley.edu/%7Emossel
http://www.stat.berkeley.edu/%7Emossel


Take-home message:
Conjecture 1: the planted model is equivalent to the 
original one up to the point where the annealed 
solution is correct                                                             
(for physicists: up to the spin glass transition...)          
and the planted configuration is a “typical” one

Conjecture 2: Planted configuration are hard to find until the       
so-called Kesten-Stigum threshold,                                                 
(for physicists: this is the local spin glass instability)                  
beyond which they can be solved easily using BP.
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Example in coloring

 Average
degree c

c=13.23(1) c=13.669(2)

The planted solution is we" hiden until cKS=(q-1)2

c=16
Glass 

Transition
Uncol KS

 Average
degree c

q log q 2q log q
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(q-1)2
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Planted configuration
easy to find!

q=5

large q



Simulating “impossible-to-simulate” models

How to perform simulations that 
are usua"y considered to be impossible?



Impossible-to-simulate problems
Random optimization problems & mean-field spin glasses
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Impossible-to-simulate problems
Random optimization problems & mean-field spin glasses

 Average
degree c

Dynamic transition

Temperature

Static Spin-Glass transition
Impossible-to-sample region
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Modus operandi

1. Plant a configuration, create the graph such that the 
configuration satisfies all constraints 

2. We now have a random instance and a “typical” 
equilibrium solution at zero temperature

3. We use it !



Example 1:
Testing the cavity predictions for the clustering transition

Prediction: beyond the so-called “dynamic” threshold, a 
non-trivial non-factorized fixed point of BP is obtained if one 

starts from an equilibrium configuration 
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Example 1:
Testing the cavity predictions for the clustering transition

M =
1

qN

∑

graph

q∑

c=1

ψc,i
BP − 1

q

1− 1
q

Simulation with N=106

Prediction: beyond the so-called “dynamic” threshold, a 
non-trivial non-factorized fixed point of BP is obtained if one 

starts from an equilibrium configuration 

ψfactorized = (
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1
q

)
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Modus operandi for finite 
temperature simulations

1. Plant a configuration, create the graph such that the 
configuration has exactly the equilibrium energy

2. We now have a random instance and a “typical” 
equilibrium solution at temperature T

3. We use it !



 Average
degree c

Dynamic transition

Temperature

Glass transtion

Example 2:
Testing the cavity predictions for the clustering transition

Prediction: beyond the so-called “dynamic” 
threshold, the Monte-Carlo Dynamic is trapped!

Ex: 3-XORSAT, T=0.255,c=3
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Example 2:
Testing the cavity predictions for the clustering transition

Prediction: beyond the so-called “dynamic” 
threshold, the Monte-Carlo Dynamic is trapped!

Ex: 3-XORSAT, Td=0.255

A better Approach:

Start with an equilibrated initial condition
Many temperatures:

Divergence of the
relaxation time

T=0.3

T=0.28
T=0.27

T=0.255

T=0.265

T=0.29

T=0.26

time
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Example 3:
Studying Monte-Carlo annealings starting from equilibrium

Prediction: cf. Zdeborová’s talk: 
Monte Carlo cooling and heating follow a well defined line

 0

 0.01
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 0  0.1  0.2  0.3  0.4
e(T) in XORSAT (c=3,K=3)

Td

XOR-SAT problems
(Parity-check)

H({S}) =
∑

ijk

1 + JijkSiSjSk
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Example 4:
Studying more complex Hamiltonians at low temperature

H({S}) =
∑

ijk

1 + JijkSiSjSk

2
+ΓHperturb

Start with an equilibrated 
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Conclusions
A quiet planting is possible in many models.

• “Quiet” Planting does not change the properties of the ensemble 
up to the condensation threshold.
• Planted solutions are hard to find until the Kesten-Stigum threshold.
• Possibility to hide solutions (even a unique solution)

FK and L. Zdeborová:
* Phys. Rev. Lett. 102, 238701 (2009)
* arXiv:0902.4185, submitted in SIAM Journal on Discrete Mathematics
* And more to come...
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There is a free lunch: instantaneous simulations.
•Many “mean field” models and random optimization models can be 
simulated efficiently using planting at zero or finite temperature.
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